

College of Engineering, Forestry & Natural Sciences

Educational Solar Tracking System

Belsheim Joshua, Francis Travis, He Jiayang, Moehling Anthony, Liu Pengyan, Ziemkowski Micah

April 25, 2014

Presentation Overview

- Introduction
- Problem formulation
- Engineering Analysis
- Final design
- Prototype fabrication
- Cost analysis
- Conclusion

Introduction

• Normal high efficiency solar tracking systems are not effective for teaching purposes

• Sponsor

- Dr. Tom Acker
 - Professor of Mechanical Engineering
 - Director of NAU's Sustainable Energy Solutions Group
- Testing Environment

– Will be tested using fixed solar panels at NAU.

Problem Formulation

- Need
 - Current solar tracking systems are intimidating to students.
 - Systems are expensive.
 - Unreliable
 - Hard to maintain

Goal

 Design and build a system that enables students to experience the fundamentals of solar tracking systems.

Objectives/Constraints

Constraints

- The team must stay within a reasonable budget.
- Limited space available for testing and solar tracking system operation.
- Weather in Flagstaff, AZ.
- Good but limited building abilities and processes available to the team.

Objectives

- The system must be inexpensive to produce.
- System must have a relatively good efficiency.
- Design must be low maintenance.
- System must have a good build quality.
- Educational

Solar Tracking Angle Analysis

- Most important angles
 - Solar azimuth (γ)
 - Angle of Incidence (Θ)
 - Panels slope angle (β)
- Tracking systems are supposed to
 - Minimize angle of incidence (Θ)
 - Maximize angle of incident beam radiation

Solar Tracking Angle Analysis Cont'd

- Knowns
 - Flagstaff at latitude of 35 degrees
 - Fixed slope angle of 36 degrees
- Matlab Program
 - Based on desired day of the year
 - Θ (angle of incidence)
 - *Ys* (Azimuth angle)
 - Θz (Zenith angle)

North-South Axis slope tracking

h = elevation angle, measured up from horizon z = zenith angle, measured from vertical A = Azimuth angle,measured clockwise from North

http://capsis.cirad.fr/capsis/help_en/samsaralight J

Torque Analysis

• The Torque was calculated using :

$$-T = F_c \times \frac{D}{2}$$
$$-Torque = 300 \, Ib \cdot in$$

• Finding the desired Motor using Full-load Torque equation

$$-T \times 4 = \frac{HP \times 5252 \times 8.851}{rpm}$$
$$-\frac{HP}{rpm} = 0.026$$

Beam Stress Analysis

- Max load 105 pounds
- Max stress 3200 psi
- Yield Strength is 51000 psi
- Min Factor of Safety is 15.94
- Max Displacement 0.014 inches

Final Design

Prototype Fabrication

- Four Phases of Construction
 - Base frame
 - Angle support
 - Solar panel box
 - Motor housing and manual crank

Base Frame

- 8ft by 6ft rectangle
 - 1"x1" square tubing
 - 1.5"x1 angled bar
- The square tubing has 18 holes drilled along their length
- Hydraulics for ease of movement
- Adjustable feet
 4"x4"

Angle Support

- Frames for solar panels 4ft by 6ft
 - Angled bar
 - 1 inch steel shafts for bearings
- Holds the Solar panel at different angles
 - 1"x1" square tubing
 - 1"x36" steel plates

Frame Connections

- 2 Heavy duty door hinges
 - Welded to top frame
- Hydraulic stabilizers

Motor and Gear Design

- Worm and Gear system
- Left side manual crank
- Right side automated system
 - Stepper motor provides the precise control over the rotation angle.

Motor and Control

- Motor case
 5mm bolts
- Coupling between motor and shaft
- STR-8 and Arduino board is used to send signals to the drive
- Separate power supply for motor and control system

Crank Housing and Shaft

- Same motor case on the hand crank side
- Crank shaft
- Keyways cut into shafts to hold worm gears
- Ability to upgrade to automatic system

Testing and Results

- 18 holes for North- South tracking.
- Change the hole position every 10-15 days.
- Motor rotates clockwise for a full rotation, and the solar panel rotates 2.5 degrees every 15 minutes.
- Solar panel rotates from 30 degrees to 150 degrees.
- https://www.youtube.com/watch?v=_X1lucYdSRc
- https://www.youtube.com/watch?v=hjXubvmJOAs&feature=yo utu.be

Manual tracking test

Automated tracking test

Cost Analysis

Resource	Cost	Justification
1.25" x 1.25" Angle Bar	\$98.09	Framework of solar panel tray
1" x 1" Square Tubing	\$180.00	Framework of tracking system base
1" Solid Steel Rod	\$13.71	Connected to bearings to turn solar panels
Motor and Control Panel	\$597.00	Standalone system used to control tracking system
Worm and Spur Gear	\$311.92	Used to rotate panels
Bearings	\$311.92	Solar panel shafts rotate on them
Hardware	\$20.00	Connections where not suitable for welding
Total	\$1532.64	

Conclusion

- We constructed a solar panel array capable of tracking the sun both manually and automatically.
- Using FEA to analyze the beam stresses and we calculated torque and maximum solar incidence angle (θ), materials for the frame were chosen.
- The frame, angle supports and housing were constructed out of materials we selected.
- Using a worm and gear system the solar panels move freely.
- Using stepper motor, STR-8 control system, Arduino board and power supply for automatically tracking.
- The solar panel array cost approximately \$1500.

References

- Beckman A., William, Duffle A. John, 2006, "Solar Engineering of Thermal Processes", Third Edition, John Wiley & Sons, Hoboken, New Jersey
- Budynas G., Richard, Nisbett J., Keith, 2011, "Shigley's Mechanical Engineering Design", Ninth Edition, McGraw-Hill, New York, New York
- Leo J., Donald, 2007, "Engineering Analysis of Smart Material Systems", John Wiley & Sons, Inc., Hoboken, New Jersey.
- (2008). "PVWATTS: Arizona Flagstaff." PVWATTS Calculator
 <<u>http://rredc.nrel.gov/solar/calculators/PVWATTS/version1/US/code/pvwattsv1.cgi</u> >(Oct. 26, 2013)

Questions?